Aitchison, J.: The statistical analysis of compositional data, Chapham and
Hall, London, New York, 1986.

Bagnold, R. A. and Barndorff-Nielsen, O.: The pattern of natural size
distributions, Sedimentology, 27, 199–207, 1980.

Bartholdy, J., Christiansen, C., and Pedersen, J. B. T.: Comparing spatial
grain-size trends inferred from textural parameters using percentile
statistical parameters and those based on the log-hyperbolic method,
Sedimentary Geology From Particle Size to Sediment Dynamics, 202, 436–452, 2007.

Bengtsson, H.: R.matlab: Read and Write MAT Files and Call MATLAB from
Within R, available at: https://CRAN.R-project.org/package=R.matlab (last access: 10 May 2019), 2018.

Bernaards, C. A. and Jennrich, R. I.: Gradient Projection Algorithms and
Software for Arbitrary Rotation Criteria in Factor Analysis, Educ. Psychol. Meas., 65, 676–696, 2005.

Blott, S. J. and Pye, K.: GRADISTAT: a grain size distribution and statistics package for
the analysis of unconsolidated sediments, Earth Surf. Process. Landforms, 26, 1237–1248, https://doi.org/10.1002/esp.261, 2001.

Borchers, A., Dietze, E., Kuhn, G., Esper, O., Voigt, I., Hartmann, K., and
Diekmann, B.: Holocene ice dynamics and bottom-water formation associated
with Cape Darnley polynya activity recorded in Burton Basin, East
Antarctica, Mar. Geophys. Res.,
2015, 1–22, https://doi.org/10.1007/s11001-015-9254-z, 2015.

Buccianti, A., Mateu-Figueras, G., and Pawlowsky-Glahn, V.: Compositional Data Analysis
in the Geosciences: From Theory to Practice, Geological Society of London, London, 212 pp., 2006.

Ciemer, C., Boers, N., Barbosa, H. M. J., Kurths, J., and Rammig, A.:
Temporal evolution of the spatial covariability of rainfall in South
America, Clim. Dynam., 51, 371–382, 2018.

David, C. H., Gil, Y., Duffy, C. J., Peckham, S. D., and Venayagamoorthy, S.
K.: An introduction to the special issue on Geoscience Papers of the Future,
Earth Space Sci., 3, 441–444, 2016.

Dietze, E., Hartmann, K., Diekmann, B., Ijmker, J., Lehmkuhl, F., Opitz, S.,
Stauch, G., Wünnemann, B., and Borchers, A.: An end-member algorithm for
deciphering modern detrital processes from lake sediments of Lake Donggi
Cona, NE Tibetan Plateau, China, Sediment. Geol., 243–244, 169–180,
2012.

Dietze, E., Wünnemann, B., Hartmann, K., Diekmann, B., Jin, H., Stauch,
G., Yang, S., and Lehmkuhl, F.: Early to mid-Holocene lake high-stand
sediments at Lake Donggi Cona, northeastern Tibetan Plateau, China,
Quaternary Res., 79, 325–336, 2013.

Dietze, E., Maussion, F., Ahlborn, M., Diekmann, B., Hartmann, K., Henkel, K., Kasper, T.,
Lockot, G., Opitz, S., and Haberzettl, T.: Sediment transport processes across the
Tibetan Plateau inferred from robust grain-size end members in lake sediments, Clim. Past, 10, 91–106, https://doi.org/10.5194/cp-10-91-2014, 2014.

Dietze, M. and Dietze, E.: EMMAgeo: End-Member Modelling of Grain-Size Data,
available at: https://cran.r-project.org/web/packages/EMMAgeo/ (last access: 10 May 2019), 2016.

Dietze, M. and Dietze, E.: EMMAgeo – R package. V. 0.9.6, GFZ Data Services, https://doi.org/10.5880/GFZ.4.6.2019.002,
2019.

Dietze, M., Dietze, E., Lomax, J., Fuchs, M., Kleber, A., and Wells, S. G.:
Environmental history recorded in aeolian deposits under stone pavements,
Mojave Desert, USA, Quaternary Res., 85, 4–16, 2016.

Flemming, B. W.: The influence of grain-size analysis methods and sediment
mixing on curve shapes and textural parameters: Implications for sediment
trend analysis, Sedimentary Geology From Particle Size to Sediment Dynamics, 202, 425–435, 2007.

Folk, R. L. and Ward, W. C.: Brazos River bar [Texas]; a study in the
significance of grain size parameters, J. Sediment. Res., 27,
3–26, 1957.

Friedman, G. M.: Distinction between dune, beach, and river sands from their
textural characteristics, J. Sediment. Res., 31, 514–529,
1961.

Gan, S. Q. and Scholz, C. A.: Skew Normal Distribution Deconvolution of
Grain-size Distribution and Its Application To 530 Samples from Lake
Bosumtwi, Ghana, J. Sediment. Res., 87, 1214–1225, 2017.

Hartmann, D.: From reality to model: Operationalism and the value chain of
particle-size analysis of natural sediments, Sedimentary Geology From Particle Size to Sediment Dynamics, 202, 383–401, 2007.

Heslop, D., von Dobeneck, T., and Höcker, M.: Using non-negative matrix
factorization in the “unmixing” of diffuse reflectance spectra, Mar.
Geol., 241, 63–78, 2007.

Hunter, D. R., Richards, D. S. P., and Rosenberger, J. L.: Nonparametric Statistics and Mixture Models, World Scientific, The Pennsylvania State University, 2011.

Klovan, J. E. and Imbrie, J.: An algorithm and Fortran-iv program for
large-scale Q-mode factor analysis and calculation of factor scores, J. Int. Ass. Math. Geol., 3, 61–77, 1971.

Lindsay, B. G. and Lesperance, M. L.: A review of semiparametric mixture
models, J. Stat. Plan. Infer., 47, 29–39, 1995.

Macumber, A. L., Patterson, R. T., Galloway, J. M., Falck, H., and Swindles,
G. T.: Reconstruction of Holocene hydroclimatic variability in subarctic
treeline lakes using lake sediment grain-size end-members, Holocene, 28,
845–857, 2018.

McGee, D., deMenocal, P. B., Winckler, G., Stuut, J. B. W., and Bradtmiller,
L. I.: The magnitude, timing and abruptness of changes in North African dust
deposition over the last 20 000 yr, Earth Planet. Sc. Lett.,
371–372, 163–176, 2013.

Meszner, S., Kreutzer, S., Fuchs, M., and Faust, D.: Late Pleistocene
landscape dynamics in Saxony, Germany: Paleoenvironmental reconstruction
using loess-paleosol sequences, Quaternary Int., 296, 94–107, 2013.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch, F.:
e1071: Misc Functions of the Department of Statistics, Probability Theory
Group (Formerly: E1071), available at:
https://CRAN.R-project.org/package=e1071 (last access: 10 May 2019), TU Wien, 2017.

Miesch, A. T.: Q-mode factor analysis of compositional data, Comput.
Geosci., 1, 147–159, 1976.

Mullen, K. M. and van Stokkum, I. H. M.: nnls: The Lawson-Hanson algorithm
for non-negative least squares (NNLS), available at:
https://CRAN.R-project.org/package=nnls (last access: 10 May 2019), 2012.

Munafò, M. R., Nosek, B. A., Bishop, D. V. M., Button, K. S., Chambers,
C. D., Percie du Sert, N., Simonsohn, U., Wagenmakers, E.-J., Ware, J. J.,
and Ioannidis, J. P. A.: A manifesto for reproducible science, Nature Human
Behaviour, 1, 0021, Tulsa, Oklahoma, USA, 2017.

Paterson, G. A. and Heslop, D.: New methods for unmixing sediment grain size
data, Geochem. Geophys. Geosyst., 16, 4494–4506, 2015.

Prins, M. A. and Weltje, G. J.: End-member modeling of siliciclastic
grain-size distributions: The late Quaternary record of aeolian and fluvial
sediment supply to the Arabian Sea and its paleoclimatic significance, in:
SEPM Special Publication, edited by: Harbaugh, J., 62, Society for Sedimentary
Geology, 1999.

Pye, K.: The nature, origin and accumulation of loess, Quaternary Sci.
Rev., 14, 653–667, 1995.

R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, 2017.

Schillereff, D. N., Chiverrell, R. C., Macdonald, N., and Hooke, J. M.:
Hydrological thresholds and basin control over paleoflood records in lakes,
Geology, 44, 43–46, 2016.

Schulte, P., Dietze, M., and Dietze, E.: How well does end-member modelling
analysis of grain size data work?, EGU General Assembly Conference
Abstracts, 1903, 2014.

Seidel, M. and Hlawitschka, M.: An R-Based Function for Modeling of End
Member Compositions, Math. Geosci., 47, 995–1007, 2015.

Strauss, J., Schirrmeister, L., Wetterich, S., Borchers, A., and Davydov, S.
P.: Grain-size properties and organic-carbon stock of Yedoma Ice Complex
permafrost from the Kolyma lowland, northeastern Siberia, Global
Biogeochem. Cy., 26, 1–12, 2012.

Stuut, J.-B. W., Prins, M. A., Schneider, R. R., Weltje, G. J., Jansen, J.
H. F., and Postma, G.: A 300-kyr record of aridity and wind strength in
southwestern Africa: inferences from grain-size distributions of sediments
on Walvis Ridge, SE Atlantic, Mar. Geol., 180, 221–233, 2002.

Sun, D., Bloemendal, J., Rea, D. K., Vandenberghe, J., Jiang, F., An, Z.,
and Su, R.: Grain-size distribution function of polymodal sediments in
hydraulic and aeolian environments, and numerical partitioning of the
sedimentary components, Sediment. Geol., 152, 263–277, 2002.

Tjallingii, R., Claussen, M., Stuut, J.-B. W., Fohlmeister, J., Jahn, A.,
Bickert, T., Lamy, F., and Rohl, U.: Coherent high- and low-latitude control
of the northwest African hydrological balance, Nat. Geosci., 1, 670–675,
2008.

Toonen, W. H. J., Winkels, T. G., Cohen, K. M., Prins, M. A., and
Middelkoop, H.: Lower Rhine historical flood magnitudes of the last 450
years reproduced from grain-size measurements of flood deposits using End
Member Modelling, CATENA, 130, 69–81, 2015.

Vandenberghe, J.: Grain size of fine-grained windblown sediment: A powerful
proxy for process identification, Earth-Sci. Rev., 121, 18–30, 2013.

Vandenberghe, J., Lu, H., Sun, D., van Huissteden, J., and Konert, M.: The
late Miocene and Pliocene climate in East Asia as recorded by grain size and
magnetic susceptibility of the Red Clay deposits (Chinese Loess Plateau),
Palaeogeogr. Palaeocl., 204, 239–255, 2004.

Vandenberghe, J., Sun, Y., Wang, X., Abels, H. A., and Liu, X.: Grain-size
characterization of reworked fine-grained aeolian deposits, Earth-Sci.
Rev., 177, 43–52, 2018.

Van den Boogaart, K. G., Tolosana, R., and Bren, M.: compositions:
Compositional Data Analysis, available at:
https://CRAN.R-project.org/package=compositions (last access: 10 May 2019), 2014.

van Hateren, J. A., Prins, M. A., and van Balen, R. T.: On the genetically
meaningful decomposition of grain-size distributions: A comparison of
different end-member modelling algorithms, Sediment. Geol., 375, 49–71,
2018.

Varga, G., Újvári, G., and Kovács, J.: Interpretation of sedimentary (sub)populations
extracted from grain size distributions of Central European loess-paleosol
series, Quaternary Int., 502, 60–70, https://doi.org/10.1016/j.quaint.2017.09.021, 2019.

Visher, G. S.: Grain size distributions and depositional processes, J. Sediment. Res., 39, 1074–1106, 1969.

Vriend, M. and Prins, M. A.: Calibration of modelled mixing patterns in
loess grain-size distributions: an example from the north-eastern margin of
the Tibetan Plateau, China, Sedimentology, 52, 1361–1374, 2005.

Weltje, G.: End-member modeling of compositional data: Numerical-statistical
algorithms for solving the explicit mixing problem, Math. Geol.,
29, 503–549, 1997.

Weltje, G. J. and Prins, M. A.: Muddled or mixed? Inferring palaeoclimate
from size distributions of deep-sea clastics, Sediment. Geol., 162,
39–62, 2003.

Weltje, G. J. and Prins, M. A.: Genetically meaningful decomposition of grain-size distributions, Sediment. Geol., 202, 409–424, 2007.

Wündsch, M., Haberzettl, T., Kirsten, K. L., Kasper, T., Zabel, M.,
Dietze, E., Baade, J., Daut, G., Meschner, S., Meadows, M. E., and
Mäusbacher, R.: Sea level and climate change at the southern Cape coast,
South Africa, during the past 4.2 kyr, Palaeogeogr. Palaeocl., 446, 295–307, 2016.

Xiao, J., Chang, Z., Fan, J., Zhou, L., Zhai, D., Wen, R., and Qin, X.: The
link between grain-size components and depositional processes in a modern
clastic lake, Sedimentology, 59, 1050–1062, 2012.

Yu, S.-Y., Colman, S. M., and Li, L.: BEMMA: A Hierarchical Bayesian
End-Member Modeling Analysis of Sediment Grain-Size Distributions,
Math. Geosci., 2015, 1–19, https://doi.org/10.1007/s11004-015-9611-0, 2015.